Nonlinearly driven transverse synchronization in coupled chaotic systems
نویسنده
چکیده
Synchronization transitions are investigated in coupled chaotic maps. Depending on the relative weight of linear versus nonlinear instability mechanisms associated to the single map two different scenarios for the transition may occur. When only two maps are considered we always find that the critical coupling εl for chaotic synchronization can be predicted within a linear analysis by the vanishing of the transverse Lyapunov exponent λT . However, major differences between transitions driven by linear or nonlinear mechanisms are revealed by the dynamics of the transient toward the synchronized state. As a representative example of extended systems a one dimensional lattice of chaotic maps with power-law coupling is considered. In this high dimensional model finite amplitude instabilities may have a dramatic effect on the transition. For strong nonlinearities an exponential divergence of the synchronization times with the chain length can be observed above εl, notwithstanding the transverse dynamics is stable against infinitesimal perturbations at any instant. Therefore, the transition takes place at a coupling εnl definitely larger than εl and its origin is intrinsically nonlinear. The linearly driven transitions are continuous and can be described in terms of mean field results for non-equilibrium phase transitions with long range interactions. While the transitions dominated by nonlinear mechanisms appear to be discontinuous.
منابع مشابه
Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems
Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...
متن کاملGENERAL SYNCHRONIZATION OF COUPLED PAIR OF CHAOTIC ONE-DIMENSIONAL GAUSSIAN MAPS
In this paper we review some recent ideas of synchronization theory. We apply this theory to study the different synchronization aspects of uni-directionally coupled pair of chaotic one-dimensional Gaussian maps.
متن کاملSynchronization of reconstructed dynamical systems.
The problem of constructing synchronizing systems to observed signals is approached from a data driven perspective, in which it is assumed that neither the drive nor the response systems are known explicitly but have to be derived from the observations. The response systems are modeled by utilizing standard methods of nonlinear time series analysis applied to sections of the driving signals. As...
متن کاملModified Sliding-Mode Control Method for Synchronization a Class of Chaotic Fractional-Order Systems with Application in Encryption
In this study, we propose a secure communication scheme based on the synchronization of two identical fractional-order chaotic systems. The fractional-order derivative is in Caputo sense, and for synchronization, we use a robust sliding-mode control scheme. The designed sliding surface is taken simply due to using special technic for fractional-order systems. Also, unlike most manuscripts, the ...
متن کاملSynchronization of Chaotic Fractional-Order Lu-Lu Systems with Active Sliding Mode Control
Synchronization of chaotic and Lu system has been done using the active sliding mode control strategy. Regarding the synchronization task as a control problem, fractional order mathematics is used to express the system and active sliding mode for synchronization. It has been shown that, not only the performance of the proposed method is satisfying with an acceptable level of control signal, but...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005